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Electronic Structure and the Properties of Metals. II. Application to Zinc 
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The method developed in the preceding paper for computing properties of metals from first principles is 
applied to zinc. The OPW form factors which determine many electronic properties and the characteristic 
function of wave number which determines many atomic properties are computed and applied to sample 
properties. Those properties treated are the Fermi surface, electronic specific heat and cyclotron resonance, 
the resistivity due to vacancies, the resistivity of the liquid, the electron-phonon interaction, the crystal 
structure and c/a ratio, the energy change on melting, the structure and energy of formation of vacancies, 
the elastic constants, the "stabilization" of ordered structures in alloys, phonon structure and dispersion, 
and the Kohn effect. Where comparison of calculated electronic properties with experiment was possible 
the agreement was good. Agreement with experiment was more limited for the atomic properties, though 
the discrepancies appeared to be consistent with the uncertainty in the interpolations used in obtaining 
the energy-wave-number characteristic. Such a discrepancy was finding the fee structure lower in energy 
than the hep structure; this also gave rise to instability against the formation of certain phonons. Other
wise the agreement for the atomic properties was semiquantitative. It is suggested that irregularities found 
by Brockhouse, Rao, and Woods in the phonon spectrum of lead are not images of the Fermi surface, but 
images of the energy-wave-number characteristic. Such fluctuations depend upon the detailed structure 
of the atom and are found to be much larger than those associated with the Kohn effect; in zinc they occur 
at wTave numbers near, but not exactly at, 2kp. The appearance of these irregularities suggests the possibility 
of computing the energy-wave-number characteristic, and therefore a wide range of properties, from such 
measurements of the phonon spectrum along symmetry directions. 

The possibility of obtaining the essential results of the theory with simpler approximations is considered, 
as well as the possibility of improving on the method. 

I. INTRODUCTION 

IN the preceding communication1 (which we will call 
I) a method was formulated for the calculation from 

first principles of a variety of electronic and atomic 
properties of metals. This formulation entailed three 
approximations: (1) the self-consistent field approxima
tion, (2) the assumption that the core states are the 
same as in the free atom, and (3) a perturbation solu
tion, carried to second order, of the Hamiltonian matrix 
based upon orthogonalized plane waves. We now 
proceed to apply this method to a specific metal in order 
to see what features of the approach are important in 
physical problems and to provide an experimental 
check on the validity of the method. 

We select zinc for the reasons outlined in our earlier 
analysis2 of the band structure and Fermi surface of zinc 
(which we will call O). This calculation is, in fact, a 
direct extension of O. 

The computations beyond those carried out in the 
treatment O were performed by hand. This entailed 
more interpolation of computed results and grosser 
numerical approximations than one would wish. Con
sequently, they do not provide as accurate an experi
mental check as would be possible with a machine 
calculation. 

We will first outline the computation which was per
formed, noting in particular the numerical approxima
tions which were involved. We present the computed 
OPW form factors which determine the interesting 
matrix elements of the pseudopotential, the energy-
wave-number characteristic which determines the de-

1 W. A. Harrison, preceding paper [Phys. Rev. 129,2503 (1963)]. 
2 W. A. Harrison, Phys. Rev. 126, 497 (1962). 

pendence of the band-structure energy, on the reciprocal 
lattice, and the equivalent effective ion-ion interaction. 
We then proceed to computations of a number of in
teresting properties and compare these with experiment 
where possible. 

II. COMPUTATION OF MATRIX ELEMENTS 

We found in I that it was possible to write the total 
energy and the scattering rates in terms of matrix ele
ments between plane waves of a pseudopotential, W. 
Further, it was found that these matrix elements could 
be separated into two factors, 

(k+q\W(k)\k)==S(q)(k+q\w(k)\k). (2.1) 

The structure factor, S(q), is given by 

5(q)=(l /^)Eiexp(~*q.r y) , (2.2) 

the sum being over the ion positions 17; this factor 
depends only upon the ion positions, not upon the ion 
potential. The remaining factor, which we called the 
OPW form factor, depends only upon the ionic potential 
and the average ion density. This OPW form factor is 
to be computed self-consistently, but the first step re
quires the determination of matrix elements of an 
/-dependent ionic potential, vOT>', which does not contain 
the field due to the conduction electrons and which is 
cut off at a sphere of volume equal to the atomic cell 
volume. The remainder of the potential, v, which in
cludes the self-consistent field of the conduction elec
trons as well as the tails of the Coulomb field of the 
ion beyond the equivalent sphere, is then included 
separately. 
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1. Matrix Elements from the Truncated 
Ion Potential 

The matrix elements of the pseudopotential based on 
the potential vop' were written in I [see Eq. (4.8)] as 

<k+q|w(*)|k>-<k+q|i»|k> 

= <k+q|*|k>-
<k|*|k> 

i-L*<k|/></|k> 

X£«<k+q|/><<|k>, (2.3) 

with [see Eq. (4.7)] 

<k+q|w|k)=(k+q|^oP
, |k) 

-E«<*|tw'|k><k+q|/>. (2.4) 

Here the matrix elements are written in terms of the 
potential, vop', and the normalized core wave functions, 
\ph centered on an ion at r=0. Writing the cell volume 
flo, these become 

<k+q|z;op/|k)=Oo-1 / r« k + * ) , r »o P V k ' * , 

(/|^oP
/|k)=0, rmUt*vop'e (2.5) 

<k+q|/) = O0-
1/2 I r ( k + ^ r W r . 

In O we computed such integrals with k and | k + q | 
always equal to the Fermi wave number. The "un
screened" potential used there was the same as vop' 
except for a muffin-tin cutoff rather than a cutoff at the 
equivalent sphere. v0p is an /-dependent potential; 
hence, it was necessary to expand the exponentials in 
spherical harmonics and spherical Bessel functions in 
the integrations. Only a small number of such integra
tions were necessary; the matrix elements for general 
relative orientation of k and k+q were then given as 
an analytic function of the angle between them. In I we 
found that this was also true if | k+q | were given some 
fixed value different from k. The analytic form may be 
written 

<k+q|w|k>-<k+q|i>|k> 

= ^ (? )+Ei5 i ( |k+q | , i )P , (cos2e) . (2.6) 

The Pj(cos2@) are Legendre polynomials of 

cos20=(k+q)-k/ |k+q |£ ; 

i.e., 2© is the angle between k and k+q. The term 

4wZe2 rra sing) 

Oo Jo qr 

A(q)- rdr 

1 = 0 
1=1 
1 = 2 

k'/kF=0 

0.3417 
0 
0 

TABLE I. 

1 

0.3123 
0.0580 
0.0256 

Bi(kf,kF) in 

2 

0.1881 
0.0810 
0.0192 

Ry. 

3 

0.0991 
0.0691 
0.0189 

4 

0.0470 
0.0433 
0.0036 

included in the Bi. We include only the terms to 1=2. 
For larger I values there would be a contribution from 
the self-consistent field, but none from exchange. The 
values of the Bi which we have computed are given in 
Table I. 

The calculation gave also "OPW overlaps" in the 
form 

E*<k+q|0<<|k>=EiCi(|k+q|,ft)Pi(cos2e). (2.7) 

The computed values of the C\ are given in Table II. 

The values in Table I, when interpolated for inter
mediate values of k'y may be inserted into Eq. (2.6) to 
give matrix elements for a sizable range of final states 
but only for initial states on the Fermi surface. For 
computing the self-consistent field and for computing 
the total energy we will need matrix elements for all 
initial states within the Fermi surface. A set of these 
might be calculated as were the values with initial 
states on the Fermi surface. We might, on the other 
hand, construct an interpolation formula for the 
matrix elements computed above and use this formula 
for all initial and final states. We have followed the 
latter procedure. Such a formula makes possible the 
analytic integration over occupied states and permits 
a hand calculation. The formula could be improved 
by fitting to a larger number of points computed as 
above. 

We first make the interpolation of the OPW overlaps, 

E« (k+q\t)(t\k) = Znbn(q)[k-(k+q)l», (2.8) 

and then write the interpolation of the OPW form 
factors, 

<k+q|w(*)|k> 
= En lan{q)+{h^/2m)bn{q)Jk- (k+q)]- . (2.9) 

This is not a general form; but it has a number of 
desirable features. (1) It was found possible to fit a 
number of computed matrix elements, for fixed q, with 
only three terms in the expansion. (2) It behaves 
properly under the interchange of initial and final states. 
This behavior required the inclusion of the bn term in 
Eq. (2.9) to give the nonhermiticity of the matrix 

derives from the net ion potential, —Ze2/r, within the 
equivalent sphere of radius r9. The remainder of flop' is 

= 0 
= 1 
= 2 

k'/kF=0 

0.0863 
0 
0 

TABLE II . 

1 

0.0745 
0.0298 
0.0338 

CiWM. 

2 

0.0488 
0.0378 
0.0460 

3 

0.0255 
0.0310 
0.0396 

4 

0.0098 
0.0207 
0.0260 
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elements calculated in I [Eq. (3.9)]. (3) I t provides a 
continuation into the region where no calculations have 
been made. (4) I t allows a term-by-term analytic inte
gration when we sum over occupied states. 

In our computation we interpolated Tables I and I I 
to give the Bt and Ci for & ' / & F = 0 . 5 , 1.5 and 2.5. For 
each value of q this gave us up to five matrix elements 
and OPW overlaps, corresponding to different values 
of k' and different relative orientations of k and k'. 
These were fit with three terms in Eqs. (2.8) and (2.9) 
for q/kF in half-integral steps from 0 through 3.0. This 
gave us, for fixed q, an analytic form for the matrix 
elements as a function of k. 

2. Matr ix Elements from the Unscreened Potent ial 

The pseudopotential matrix elements described above 
are based upon the truncated ion potential vop\ We add 
to these the matrix elements associated with the tails 
of the truncated ion potential and those associated 

with the charge density due to orthogonalization. Both 
of these are simple potentials and give, therefore, func
tions of q only. 

The number of (positive) electronic charges localized 
by the orthogonalization in the region of each nucleus 
is readily seen to be the average over k<kF of 
ZEe <k|/><*|k>=Zfto(0) = Z ZiC,(*,*). From Table I I 
we obtain the value 0.138Z=0.276. We approximate 
this localized charge by a point charge; thus the addition 
of the tails of the Coulomb potential and the charge 
due to orthogonalization gives the matrix elements of 
the unscreened potential in the form of the right-hand 
side of Eq. (2.6) with A(q) replaced by lA38Z4Tre2/q2Q0 

and the Bi remain the same as in Table I. 

3 . Matr ix Elements from the Screened Potential 

In I we found the screening potential, in terms of the 
matrix elements of the uncreened pseudopotential, w°, 
to be given by3 

4we* [<k+q|w(4)°|k> <k-q|w(*)° |k>* 

q2Q k<kF Tk-Tt &+«z Tk—Tk-k—q 

4we2 

i E 
l l 

(2.10) 

q2U k<kF \Tk — Tk+q Tk—Tic-q 

We note that if the matrix elements were independent of 
k they could be taken outside of the summation in the 
numerator and the result written in terms of the Har-
tree dielectric function: vq

sc= ( k + q| w(k)°\k)(l — eg)/eq. 
This, however, is not the case and we must substitute 
the analytic form for the uncreened matrix elements in 
the summation. The summation is converted to an 

FIG. 1. The OPW form factors for zinc at the observed density 
and for k equaling the Fermi wave number, kr. The three curves for 
different orientations of k and q would be the same if the pseudo-
potential could be written as a simple potential. Matrix elements 
of the pseudopotential are obtained by multiplying these form 
factors by a structure factor depending only on the positions of 
the ions. 

integral and performed term by term for each value of 
q (again taking q in half-integral steps from 0 to 3). 
The angular integration was performed first; then the 
integral from k—0 to kF. 

This vq
ac is added to the unscreened form factors to 

obtain the final self-consistent OPW form factors. The 
matrix elements which enter all of our calculations are 
proportional to these form factors. 

We have plotted a series of computed form factors as 
a function of q for three relative orientations of k and q 
in Fig. 1. The curves are drawn through computed 
points at the half-integral values of q/kF- Values above 
q=3kF are obtained by noting that the screening field 
is negligible in this region, and carrying Eq. (2.6) as 
far as possible with the Bi values given in Table I. 

Several features of the curves are worth noting. The 
2=0 limit is given by 

lim (k+q|w(£)|k)=-
<z-*o -[f+0.1381(1-6 W ) ] £ * 

The curves plotted are for k=kF, so the limiting form 
factor is simply the free-electron value — | £ F . Thus we 
would obtain the usual limit to the interaction between 
electrons and long wavelength longitudinal phonons, 
but would obtain corrections to the Bohm-Staver4 

calculation of the speed of sound. 
We note the rapid decrease in the magnitude of the 

form factors near q=2kF as the repulsive terms in the 
3 As in I, the summation over k implies a summation also over 

spin. 4 D. Bohm and T. Staver, Phys. Rev. 84, 836 (1950). 
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pseudopotential become important. This is responsible 
for the nearly-free-electron-like character of the Fermi 
surface. 

We note the spread between the three curves, 
especially near q=2kpy indicating the importance of the 
/-dependent potential and the corresponding breakdown 
of any wave-number-independent pseudopotential 
approximation. 

We note the apparently rapid decrease in the form 
factors at large q which is necessary if the OPW method 
is to converge rapidly. 

The particular set of OPW form factors connecting 
two states which both lie on the Fermi surface is of 
particular interest and is plotted in Fig. 2. This is the 
set which enters first-order scattering and which deter
mines the Fermi surface. Again values were computed 
only at half-integral q/kF. The experimental values 
listed are from fitting the experimental surface in the 
paper O. 

HI. EVALUATION OF THE ENERGY 

In I we divided the total energy of the crystal into 
three terms: (1) the free-electron energy, which is inde
pendent of the arrangement of the ions and therefore 
need not be evaluated for the problems we discuss; 
(2) the electrostatic energy, which is equal to the Cou
lomb energy of a set of point positive charges at the ion 
positions and with charge equal to Z* = Z(1 —0.1382)1/2 

= 1.981 for zinc imbedded in a compensating uniform 
negative background; and (3) the band structure energy 
given by 

Eb8=ZqS*(q)S(q)E(q), (3.1) 

C I 

TABLE III . E(q) in Ry per electron. 

FIG. 2. The OPW form factors for zinc at the observed density 
and for k and | k + q | equaling the Fermi wave number, kp. These 
form factors determine all matrix elements which enter first-order 
scattering and are predominant in determining the Fermi surface. 
The three experimental points are from the "experimental band 
structure" of zinc determined earlier (see reference 2). 

q/kF E(q) 

0 
0.5 
1 
1.5 
1.75 
2.0 
2.25 
2.5 
3 

-1 .08 
-0.0368 
+0.00198 
+0.00158 
-0.00048 
-0.00322 
-0.000697 
-0.000238 

per electron with E(q), the energy-wave-number charac
teristic, given by 

NZ k<kp 
<k+q|W(A)o|k>E,<k!<></|k+q) 

<k+q |w(* ) | k ) | 2 wQo?2 

Tk—Tk+q 4wZe2 

+V cE*(<k-qlW> 

- <k! t){t I k) U^te^'drX]. (3.2) 

In the final sum over core states we again treat the 
ions as small, and set J>\l/*^teiqTdT=l. We may then 
readily show that the contribution of the final sum over 
/ to E(q) is vq

8Cb2(q)q2kF2/S which turns out to be 
negligible compared to the other contributions to E(q), 
as suggested in I, and it is dropped. 

The other contributions may be computed directly 
from the parameters computed above. The sum over 
k<kp is converted to an integral as in the computation 
of the screening field, but the evaluation is much more 
laborious. For the term in which the form factor appears 
squared we end up with well over one hundred terms by 
the time all integrations are performed. This gives us 
values of E(q) for half-integral values of q/kF through 
3.0. We also obtained values for g/&F=1.75 and 2.25 
by interpolating the an(q) and bn(q). The values ob
tained are listed in Table I I I and are plotted in Fig. 3. 

We will use this E(q) function directly in all of the 
computations of band-structure energy to be made here. 
As indicated in I, we may transform this curve and add 
the Coulomb interaction to obtain an effective two-body 
interaction between ions. We wrote x=q/kF, and found 
the effective interaction V(r) given by 

V(r) 
3Z2 r«> 

= / xsi 
kF? J 0 

sink FrxE(kFx)dx+Z*2e2/r. (3 J) 

This calculated interaction is tabulated in Table IV and 
plotted in Fig. 4. The rather striking minimum occurs 
at approximately the nearest-neighbor distance in zinc. 
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FIG. 3. The energy-wave-number characteristic for zinc at the 
observed density. The band-structure energy is obtained by sum
ming the product of the characteristic and the square of the mag
nitude of the structure factor over reciprocal lattice vectors, 
Eb8= S4|5(q)|2-Efe). \S(q)\2 times the number of reciprocal 
lattice vectors with magnitude equal to q/2w is plotted below for 
hep (at the observed c/a), fee, and bec structures. 

The oscillatory character arises from the general shape 
of the E(q) curve rather than from singularities in E(q) 
at q=2kF. We might also note that the Born-Mayer 
potential is monotonic rather than oscillatory as we find. 

The use of V(r) avoids the necessity of separate 
electrostatic energy computations. For all of the prob
lems we treat we find it more convenient to use the 
formulation with E(q) and to compute the change in 
electrostatic energy upon rearrangement separately. 
This calculation may be done following Fuchs,5 who 
gave the electrostatic energy per ion as 

- t ies— 1*-* & i 

4 T € 

l O 0 

-«2/4ij 2t)1/2 

S*S— 
r l /2 

+L/ 
G(vmn) 

T)QQ 

(We have rewritten his form in our notation.) G{x) 
— (2/\Ar) fx,* e~x dx. v\ is a parameter which is selected 
to obtain good convergence in both sums. We find it 
most convenient to take the limit as t\ goes to infinity. 

TABLE IV. v(r) in Ry. 

3.6 
3.74 
4.67 
5.60 
6.54 
7.47 
8.40 
9.34 

11.20 
13.07 

V(r) 

+0.068 
-0.0100 
-0.0964 
-0.0387 
-0.0126 
+0.0064 
+0.0170 
+0.0089 
-0.0062 
+0.0011 

We then find the change in electrostatic energy with a 
rearrangement at constant volume, and the correspond
ing change in structure factors 5(5*5), as 

8EeB=|Z* V— lim £</ 8(S*S) per ion. (3.4) 
fio "-" q2 

This form is found to converge suitably for the problems 
we treat, though frequently it is necessary to evaluate 
certain infinite sums in closed form before taking the 
limit. This then allows us to treat the problems com
pletely in terms of the change in structure factors. 

The computation of the form factors, the energy-
wave-number characteristic, and the effective ion-ion 
interaction given above represents the bulk of the effort 
in the calculation of a range of electronic and atomic 
properties. We will now proceed to calculate several 
such properties. 

IV. ELECTRONIC PROPERTIES 

1. Fermi Surface 

The geometry of the Fermi surface enters directly in 
a number of topological properties, such as the de Haas-
van Alphen effect, magnetoacoustic oscillations, and the 
anomalous skin effect. It has been recognized6,7 for some 
time that a reasonably good account of the Fermi sur
face of many polyvalent metals could be given in terms 
of a nearly-free-electron or one-OPW approximation. 
This is a zero-order approximation in the expansion we 

.05 h 

0 

n 

•hi 11, 
hep 

1 / \ ^ \ 
5 / 10 

/ r IN o u 

6 K. Fuchs, Proc. Roy. Soc. (London) A151, 585 (1935). 

FIG. 4. The effective ion-ion interaction for zinc at the observed 
density. The number of neighbors, as a function of distance, is 
shown above for the hep structure with the observed c/a ratio. 

6 A. V. Gold, Phil. Trans. Roy. Soc. (London) A251, 85 (1958). 
7 W. A. Harrison, Phys. Rev. 118, 1190 (1960). 
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are using. The agreement can be considerably improved 
by using OPW form factors as computed above and 
going to a "few-OPW approximation'' as we have done 
in O. It would appear that the remaining discrepancy 
arises primarily from errors in the OPW form factors 
rather than from the limitation in the number of OPW's 
used, although in cases where the band gaps are quite 
small the inclusion of more OPW's may invert the order
ing of levels. This was found to be the case by L. M. 
Falicov and G. Weiss (private communication) in 
magnesium near the point K. 

The agreement with the observed Fermi surface 
which we found in O provides the first check on our 
calculation. 

2. Density of States and dE/dk 

The computation of the density of states, which is 
proportional to the change in volume of a constant 
energy surface with energy (evaluated at the Fermi 
surface), is straightforward. For this calculation form 
factors other than those of Fig. 2 enter. The deviations 
from the free-electron value are obtained by computing 
the corrections to the energy at the Fermi surface [the 
third and final terms of Eq. (3.10) in I which are of the 
form of the first and second terms in Eq. (3.2) here] 
and taking the derivative with respect to k. We then 
average dE/dk over the Fermi surface and compute the 
density of states. By exact treatment of a two-by-two 
secular determinant we may show again that taking 
principal values in the integrals is appropriate. In 
analogy with the computation of the energy we obtain 
an equation of the form of Eq. (3.1) with E(q) replaced 
by a function of wave number representing the change 
in density of states. This function is to be multiplied by 
S*S and summed over wave number space to obtain 
the density of states. 

In zinc the major contribution comes from the twelve 
lattice wave numbers of the type (1,0,1) for which 
q/2kF=0.952. The main effect occurs near the inter
section of the corresponding zone face and the Fermi 
surface and we may obtain a good estimate by using a 
constant form factor corresponding to q= —2(0.952)k 
and |k| = £ F ; this value is 0.06 Ry. The correction to 
the density of states due to these twelve planes corre
sponds to a thermal mass of 0.91m. Corrections due to 
the other lattice wave numbers are very much smaller. 
Lattice wave numbers for q<2kp tend to reduce the 
mass; those for q>2kF raise it. 

The observed8 density of states mass is 0.93m. The 
agreement we find must be regarded as entirely fortui
tous. We would expect to find similar theoretical values 
slightly less than m for other polyvalent metals, but 
only zinc has an observed mass in this region; aluminum, 
cadmium, and indium have masses near 1.5m; mercury 
and lead are near 2m. Only gallium (0.6m) and zinc have 

8 A recent measurement has been made by T. M. Srinivasen, 
Proc. Indian Acad. Sci. A49, 61 (1960). 

values less than m. We expect to find sizable corrections 
to the density of states from electron correlations9 and 
from the self-energy of electrons due to the electron-
phonon interaction.10 Neither of these corrections have 
been included in our analysis; they presumably are 
responsible for the high masses in other metals; but 
they appear to make little net contribution to the mass 
in zinc. 

Unfortunately, we probably cannot conclude that the 
observed cyclotron masses in zinc should agree closely 
with the computed values. An examination of the experi
mental cyclotron masses of lead by Anderson11 suggests 
that the dE/dk corrections are strongly anisotropic. 
Thus, it may be that some cyclotron masses are raised 
and some lowered by electron-electron and electron-
phonon effects, though the average remains unchanged. 

The question arises whether such corrections appear 
in computations of the resistivity through a modified 
density of scattered states and through a modified 
particle velocity. Langer12 has studied this question in 
detail with regards to electron-electron interactions. He 
points out13 that the problem is more simply viewed in 
terms of a scattering cross section or mean free path and 
that these tend not to be affected by electron-electron 
interactions. Thus, any apparent dependence upon the 
density of states cancels in the resistivity and our 
Hartree treatment should be appropriate. 

3. Scattering by Defects 

We found in I that scattering, to first order in the 
pseudopotential, could be written as free-electron 
scattering 

2 W = (2T/») I <k+q I W(k) | k) 125(7Ve- Th\ 

where Pk+g.k is the probability per unit time of scatter
ing from a state k to a state k+q; the matrix elements 
may be separated into a form factor and a structure 
factor according to Eq. (2.1). In computing a scattering 
time for resistivity we multiply the scattering proba
bility by 1 — cos2 ©, where 20 is again the angle between 
initial and final states, and sum over final states. The 
resistivity is then written in terms of this scattering 
time, 

p=CNJ \S(q)\2\{k+q\w(k)\k)\2x*dx, (4.1) 
Jo 

where x=q/k and k+q as well as k lies on the Fermi 
surface. N is the number of atoms present and 

C=3wm&o/8foe2EF 

has the value 1800 juft cm per Ry2 for zinc. 
9 See, for example, J. G. Fletcher and D. C. Larson. Phys. Rev. 

I l l , 455 (1958). 
10 J- J- Quinn, in The Fermi Surface, edited by W. A. Harrison 

and M. B. Webb (John Wiley & Sons, Inc., New York, 1960), 
p. 58. 

11 J. R. Anderson (unpublished). 
12 J. S. Langer, Phys. Rev. 120, 714 (1960) and 124,1003 (1961). 
18 J. S. Langer (private communication). 
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FIG. 5. The square of the structure factor in liquid zinc times 
the number of atoms present as a function of wave number, ob
tained from the data of Gamertsfelder (see reference 16). 

The form factor appearing in Eq. (4.1) is just that 
plotted in Fig. 2. We need simply determine S(q) for the 
defect in question and perform the integral to obtain the 
resistivity. 

The simplest defect is a vacancy (or interstitial) 
under the assumption that no distortion of the neighbor
hood occurs. We will examine this assumption when we 
consider the structure of defects in a later section. For 
a single undistorted vacancy, a structure factor of 
magnitude \/N is introduced at every point in wave-
number space satisfying periodic boundary conditions 
in the volume. (We will need to consider these structure 
factors with more care when we compute the energy 
of formation of a vacancy.) Thus we obtain the resis
tivity per vacancy by replacing S(q) by 1/N in Eq. 
(4.1) and integrating. It is convenient and reasonably 
accurate to approximate the form factor of Fig. 2 by 
—0.463+0.269x. We obtain for the resistivity 0.65 
/xl2 cm per at.%. 

A similar treatment of scattering by vacancy clusters 
dislocations, stacking faults, or any other defect can be 
made once one specifies the ion positions. The calcula
tions could be carried to higher order to include the 
effects of the band structure, but the corrections are 
small in cases where the first-order scattering is non-
vanishing. Freeman14 has treated the stacking fault in 
this manner and found that for certain ranges of the 
angle of incidence no scattering appears in first order, 
and has carried the analysis to second order. 

4. Resistivity of the Liquid 

We may proceed with the resistivity of the liquid as 
we did for static defects. Such an approach is the same 
as that used by Ziman15 for the resistivity of the liquid, 
but the form factors used are more realistic and the 

14 S. Freeman, Jr. (to be published). 
15 J. M. Ziman, Phil. Mag. 6, 1013 (1961). 
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somewhat arbitrary separation of structure and plasma 
terms is unnecessary. We obtain the structure factors 
from x-ray diffraction experiments, as did Ziman. From 
the data of Gamertsfelder16 we determine N\S(q)\2, 
which we plot against q/kF (taking UF for the liquid) in 
Fig. 5. We use this with the approximate form factor 
given above and perform the integration (4.1) numeri
cally. We obtain 39 juO cm. The experimental value 
given by Bradley et al.17 is 37 /x£2 cm. 

The agreement is even closer than we would expect 
in view of the small discrepancies we found in compari
son of the computed form factors and the observed 
Fermi surface band gaps. It is rather striking that use 
of the proper form factor has removed all of the dis
crepancy found by Bradley et al.17 It might also be 
remarked that in most other respects our treatment of 
liquids is equivalent to that of Ziman and Bradley et al. 

5. Electron-Phonon Interaction 

Our analysis has contemplated a static arrangement 
of the ions. However, we may introduce phonons simply 
by letting the ion positions change with time; our analy
sis then corresponds to a Born-Oppenheimer approxi
mation. We expand the ion displacements in the form, 

$r, = Z Q ag(*) exp(iQ• r,-), (4.2) 

where the &Q are regarded as small. Since there are two 
atoms per cell in zinc we must let Q run over the double 
zone in order to allow general displacements. We sub
stitute Tj+dTj in the structure factor and expand to 
second order in ^Q (only first order is of interest here, 
but the second order will be needed when we discuss 
phonon dispersion). 

5(q) = 5°(q)-Egfq-aa5°(q-Q) 
~iZQ.Q> q-agq-ag^Cq-Q-QO, (4.3) 

where 5°(q) are the structure factors before the intro
duction of displacement, i.e., delta junctions at the 
lattice wave numbers, q0 (27r times the reciprocal lattice 
vectors). 

Thus, a nonvanishing structure factor, with magni
tude —i(qo+Q),ag50(qo) is introduced at each wave 
vector qo+Q (for every q0 and every Q). 

Let us consider the scattering from a state k to a state 
k-f q. Further, let q lie in the double zone (normal scat
tering). The corresponding matrix element is given by 

- i q - { ^ ( 0 ) a g + ^ ( - q 0 ) a ^ 0 } < k + q [ ^ ) | k ) , (4.4) 

where qo is the one lattice wave number for which q+ qo 
lies in the double zone. The presence of two coefficients, 
a, corresponds to the fact that there may be scattering 
by acoustical or optical modes in zinc. We note that the 
appropriate form factor for these two states is the same 

16 C. Gamertsfelder, J. Chem. Phys. 9, 450 (1941). 
17 C. C. Bradley, T. E. Faber, E. G. Wilson, and J. M. Ziman, 

Phil. Mag. 7, 865 (1962). 
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for acoustical and optical modes, and for longitudinal 
and transverse polarizations; it is the form factor plotted 
in Fig. 2. If q lies outside the double zone (Umklapp) 
there are two lattice wave numbers for which q + q0 lies 
within the double zone and in the corresponding matrix 
element both terms appear as the second above with 
q0 taking these two values in the two terms. 

To determine the scattering by a given phonon, we 
must determine the structure of the phonon (the relative 
values of the components of the a^'s which enter) and 
this will be taken up in a later section. For a Debye 
model of acoustical modes we keep only ag's for Q in 
the single hexagonal zone and we obtain immediately 
three familiar results: pure transverse phonons do not 
contribute to normal scattering; the matrix element 
associated with longitudinal scattering are proportional 
to the corresponding dilatation; the proportionality 
factor approaches minus two-thirds of the Fermi energy 
in the long-wavelength limit. I t is also interesting to 
note that in zinc, because the form factor goes through 
zero, there is no scattering through an angle of about 
40°, only larger or smaller angles. 

V. ATOMIC PROPERTIES 

1. Crystal Structure and c/a Ratio 

We choose to compute the band-structure energies of 
the different crystal structures separately from the 
electrostatic energy since the latter has been computed 
and appears in the literature.18 The difference in electro
static energy between hexagonal close-packed (ideal 
c/a), face-centered cubic and body-centered cubic struc
tures is of the order of 10~4 Ry per electron and negli
gible. We wish, however, to compute the variation in the 
hep energy with variation of c/a and the contribution 
of the electrostatic energy there is sizable. We use the 
computation by Huntington,19 which in our units is 
0.064 {c/a—1.633)2 Ry per electron. The band-structure 
energy is computed by evaluating the sum S*SE(q) over 
lattice wave numbers for the three structures and with 
varying c/a for hep. (In all cases the density is taken 
equal to that observed for zinc.) Contributions for q 
greater than 3.5kF were obtained by approximating 
E(q) by 0.15 exp(— 2.15q/kF) and the structure factors 
by a continuum as follows: we note that the sum of S*S 
over any sufficiently large volume of wave-number 
space, jTd3q, is that volume divided by the Brillouin 
zone volume, 2Bz. Thus we sum S*SE(q) over a set of 
neighboring lattice wave-number points and also evalu
ate the sum of S*S for the same set. We then determine 
a radius, qs, such that 47r^ 3 /3S2 B z=l+E S*S. The 
one corresponds to the q = 0 lattice wave number. The 
contribution of the more distant lattice wave numbers 

.006 r 

18 W. J. Carr, Jr., Phys. Rev. 122, 1437 (1961). 
19 H. B. Huntington, in Solid State Physics, edited by F. Seitz and 

D. Turnbull (Academic Press Inc., New York, 1958), Vol. 7, p. 
213. ' F 

FIG. 6. The computed band-structure energies of hep, fee, and 
bec zinc (all at a density equal to the observed density). The hep 
energy is given as a function of c/a and includes the change in 
electrostatic energy with departure of c/a from the ideal value. 
The electrostatic energy for the three structures (with c/a ideal 
for hep) is (see reference 18) approximately the same, — 0.312Z*2 

= — 1.271 Ry per electron. 

is then written as 

d*qE(q)/QBz = 3 I. x2E(k Fx)dx. 
Qs/kF,*> 

We found that if ]T S*S w e r e taken greater than about 
30, the total energy did not depend appreciably upon 
the choice of 2Z S*S though the magnitude of the con
tinuum contribution was not negligible. 

We add to the band-structure energy the electrostatic 
energy given above to obtain the results shown in 
Fig. 6. We note first that we find the fee structure with 
lower energy than the hep, contrary to what is observed. 
We note second that the minimum energy of the hep 
structure occurs at approximately the observed ratio. 
Our failure on the first point represents an error of at 
least 0.004 Ry per electron, or 0.054 eV per electron. 
Inspection of E(q) and the structure factors of Fig. 3 
makes it clear that variations of this size can be made 
by reasonable modifications of our interpolations. We 
conclude that our calculation of E(q) was not sufficiently 
close-grained to allow a quantitative test of the method. 
We note, however, that the energy differences obtained 
are of a reasonable order of magnitude (these energies 
correspond to temperatures of a few hundreds of deg), 
and it seems likely that with a slightly more complete 
calculation, we may be able to compute the most stable 
structure reliably. 

This uncertainty of the interpolation applies also to 
the determination of the c/a ratio. With a different 
interpolation we might shift the computed stable c/a 
ratio significantly. Thus the agreement with the ob
served ratio must be regarded as fortuitous. Several 
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points are worth noting, however. The electrostatic 
energy rises quadratically with departure from the ideal 
c/a ratio; it is just the band-structure energy which 
causes departures. The band-structure energy also re
duces the curvature appreciably, a fact which will be 
discussed in connection with the elastic constants. 

Another interesting point may be noted from Fig. 3 
where the hep structure factors are shown, as well as 
the E(q) curve. The hexagonal face of the double 
Brillouin zone corresponds to the smallest lattice wave-
number (q= 1.63k F) and lies in a region for which 
dE(q)/dq is negative. Thus as the c/a ratio increases and 
the corresponding q drops, the energy contribution rises. 
The c/a ratio is higher than ideal in spite of the hex
agonal face. We find, in fact, that the zone faces which 
intersect the Fermi surface for all three structures are 
repelled rather than attracted. This feature of the band-
structure energy depends upon the details of the po
tentials and is not necessarily a general result. 

2. Energy Change on Melting 

We may compute the band-structure energy of the 
liquid directly, again using the experimental structure 
factors of Fig. 5. The sum over wave-number space is 
replaced by an integral which for a divalent metal may 
be written in the form, 

£ « S*SE(q) = 3 ( NS*SE{q)(q/kF)H(q/kF). 

This integral was performed using the curves of Figs. 3 
and 5. The rather surprising result is —0.13 Ry per 
electron. We see from Fig. 6 that this is significantly 
lower than the band-structure energy of any of the 
crystal structures computed. It is not the effects of band 
structure which favor the formation of a periodic struc
ture, but the electrostatic energy. 

We may attempt a computation of the change in 
electrostatic energy, again using the structure factors 
from Fig. 5. We use Eq. (3.4) noting that the energy 
of an ideal gas, for which S*S= 1/N for all q, is zero. 
We obtain 

£ e s= (Z**e*kF/w) I (NS*S- l)d(q/kF). 

This is readily evaluated to obtain —0.65 Ry per elec
tron, some 0.6 Ry per electron higher than that for the 
crystal structures. This is much too high a value and 
indicates that the experimental structure factors are not 
nearly accurate enough to allow a determination of the 
electrostatic energy. The heat of fusion of zinc is 0.003 
Ry per electron. In order to compute the electrostatic 
energy to sufficient accuracy we would need the area 
between the curves NS*S and 1 in Fig. 5 to one part in 
a thousand; the curve is clearly not that well known. 

3. Structure and Energy of 
Formation of Defects 

It seems easier, at least conceptually, to compute the 
structure of defects using V(r) rather than E(q). The 
V(r) curve which we have computed would seem not 
sufficiently well determined to warrant a detailed treat
ment of the structure of any defect. However, we may 
note some interesting features by considering a vacancy. 
It can be seen from Fig. 4 that dV(r)/dr is positive and 
rather large for the twelve nearest neighbors. Thus, if 
we remove a single atom from the lattice, the un
balanced force on the nearest neighbors is outward, and 
they suffer a first-order outward displacement. The 
first-order displacement of the next-nearest neighbors is 
also outward, but smaller. These displacements bring 
the nearest and next-nearest neighbors closer together 
and increase the attraction between them; thus the 
second-order displacements also tend to bring these 
closer together. Without carrying out the detailed mini
mization of the energy we obtain a picture of the va
cancy structure: the vacancy is slightly larger than it 
would be without displacements, but the ion density im
mediately surrounding the vacancy is higher than nor
mal. It is not clear what the long-range displacements 
are. We should also remark that this conclusion is 
rather sensitive to the position of the sharp minimum in 
Fig. 4 and is, therefore, open to question. 

We may also estimate the energy of formation of a 
vacancy. We do this for an undeformed vacancy and 
thus tend to overestimate the energy slightly. We must 
take care in the energy calculation to keep the total 
number of ions fixed and to keep the volume fixed. Thus, 
we compare the energy of N ions in the perfect lattice 
corresponding to the lattice wave numbers q0 with N ions 
in a lattice with wave numbers qo'and a vacancy. The qo' 
are increased according to q0

/ = [l+l/(3A r)]q0 in order 
to keep the volume fixed. The structure factors in the 
lattice with a vacancy associated with q</ are equal to 
those in the perfect crystal for the corresponding q0. 
In addition, structure factors with magnitude 1/N 
are introduced at every other q satisfying periodic 
boundary conditions in the volume. 

We first compute the difference in band-structure 
energy. The contribution to the total band-structure 
energy [note that E(q) gives the energy per electron] 
from the continuum of structure factors 1/N is found 
to be $ZfE{q)xHx} with x=q/kF. This we may evalu
ate from our E(q) curve to obtain —1.52 Ry. The change 
in band-structure energy due to the shift of the lattice 
wave numbers is (Z/3)J^qoS*SqodE(qo)/dq0. This is 
found to be about —0.04 Ry. The change in electrostatic 
energy is computed in a similar way using Eq. (3.4). 
We obtain —(2/3) the electrostatic cohesive energy 
per ion. With our effective charge this leads to 1.69 Ry. 
The total energy of formation, then, is found to be 
0.13 Ry or 1.8 eV. 

This would appear to be an overestimate; the activa-
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tion energy for self-diffusion, which includes the energy 
of formation and the energy of motion, is about one 
electron volt.20 However, we are in this case computing 
the difference between large quantities (the band-struc
ture energy and the electrostatic energy differ by less 
than a tenth of either) so the error in the band-structure 
energy is less than 10%, which is gratifying. We further 
note that the main contribution to the change in band-
structure energy comes from the region of small g, so a 
little more care in this region may easily improve the 
agreement. 

4. Elastic Constants 

There are three independent, volume-conserving 
shear strains in hexagonal metals.19 One of these corre
sponds to a change in the c/a ratio at constant volume 
and the corresponding elastic constant can be obtained 
directly from Fig. 6. We fit the energy values at 
c/a= 1.5, 1.8, and 2.0 with a parabola and obtain the 
elastic constant from the quadratic term. We obtain 
cii+cn+2czz—4ci3=30X10n dyn/cm2. The experi
mental value given by Huntington19 is 11.7. We note 
that the value from the electrostatic energy alone is 45, 
so our error in the band structure contribution is a 
factor of two. This discrepancy is not at all surprising 
in view of the uncertainty in the parabolic approxima
tion to our interpolated curves. We may also note that 
the neglect of core-core interactions is much more serious 
in computing elastic constants than in computing 
energies. It is interesting to note that the effect of band 
structure is to reduce the elastic constants significantly. 

An attempt was made to compute the band structure 
contributions to the other two shear constants. They 
were found to be small, as they should be; the numbers 
obtained were within error of zero. 

5. Stabilization of Structures 

We wish to make two comments concerning the 
ordering of alloys though these are not strictly within 
the domain of our analysis. It would probably be most 
convenient to formulate the theory of a binary alloy in 
terms of a form factor which is the average of that for 
the twTo components and one which, for each component, 
is the difference from the average. We can then focus 
our attention on the term from the difference. We may 
find that, just as in the study of the liquid, the band-
structure energy is lower in the disordered alloy; if then 
Z* is the same for both components, the alloy will not 
order at any temperature. 

Sato and Toth21 have met with significant success in 
correlating the ordering distance in binary alloys with 
Brillouin zone faces tangent to the surface, so-called 
stabilization. Clearly on any simple model, the energy 

20 G. A. Shim, E. S. Wajda, and H. B. Huntington, Acta Met. 
1 513 (1953). 

'21 H. Sato and R. S. Toth, Phys. Rev. 127, 469 (1962). 

due to a zone face drops monotonically as that face is 
brought in through the Fermi surface. Thus stabilization 
does not exist in three dimensions unless the effective 
band gap has an accidental maximum in this region. 
We see from Fig. 3 that there does exist a sharp mini
mum in E(q) in zinc which arises from the maximum 
form factors seen in Fig. 1. If we are to explain the 
stabilization in terms of a similar effect in the systems 
studied by Sato et aln we must assume that this mini
mum moves with the Fermi surface during alloying. 
Clearly our calculation on a single metal does not tell 
us whether such a movement is to be expected. 

It is interesting to note that the prominent minimum 
in E{q) derives almost entirely from the orthogonaliza-
tion corrections [first term in Eq. (3.2)] which would 
be entirely absent in a wave-number-independent 
pseudopotential approximation. 

6. Phonon Structure and Dispersion 

We proceed with the construction of the phonon as in 
Sec. IV 5. We include two amplitude vectors. aQ and 
aQ', corresponding to wave numbers in the double zone 
and differing by 2w/c in their component along the 
c axis. We also include a_Q=aQ* and a_Q' = aQ'*. The 
structure factors are given by Eq. (4.3). We find 
second-order corrections to S*S at lattice wave numbers, 
q0, which had nonzero structure factors in the perfect 
lattice, and values of S*S which are second order in the 
a's at wave numbers, qo±Q. Each of these second-order 
terms, in general, depends both on aQ and aQ'. The 
change in energy may be written in terms of these 
structure factors and is a quadratic form in the six 
components of the a's. The coefficients depend upon 
E{q). We may also write the kinetic energy as a quad
ratic form in the a's. This results in the problem of 
computing the normal modes (the structure of the 
corresponding phonons) and vibration frequencies of a 
system with six degrees of freedom. 

We restrict our attention here to the interesting case 
in which Q is parallel to the c axis and very near zero; 
Q' is parallel to the c axis and very near — 2ir/c. We 
first let Q approach zero and keep only terms which are 
zero-order in Q. We compute a correction to S*S near 
each q0 by adding the modified S*S at q0 to those at 
qo±Q and subtracting the initial S*S. We find that only 
the a and a* corresponding to Q' enter; these modes will 
correspond to the optical modes. We find corrections to 
the structure factors given by S*S= (— l)n+121 q0- &Q> |2 

for qo=2irn/c and parallel to the c axis, and 
S*S= (— l)n | q0 • aQ/12 for q0 having a lateral component 
equal to the smallest lattice wave number in the basal 
plane (47r/31/2a) and component along the c axis equal 
to 2-wn/c. Contributions of the more distant qo to the 
energy are negligible. There are no cross terms between 
components of aQ' parallel and perpendicular to the 
c axis, so we obtain pure longitudinal and pure trans
verse waves; the transverse waves are degenerate. We 
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compute the band-structure energy associated with the 
first set (q0 parallel to the c axis) by summing through 
n=3, and with the second set by summing through 
n—2. We obtain for the longitudinal wave ( |ag ' |=a ' 
parallel to c axis) a band-structure energy of —0.93a'2 

Ry/ion if a! is in atomic units. For the transverse wave 
we obtain —0.035a'2 Ry/ion if a! is in atomic units 
(a.u.). Similarly we may compute the electrostatic 
energy for these two cases from Eq. (3.4). For the 
longitudinal wave we find the electrostatic energy, 
within about 1%, by summing only along the c axis 
from — oo to oo before letting t\ go to infinity. We obtain 
4TTZ* W 2 / 0 0 per ion, or 0.99a'2 Ry/ion. For the trans
verse wave almost the entire electrostatic energy is 
obtained by summing over the six lines parallel to the 
c axis and through the smallest transverse lattice wave 
numbers. We obtain for the electrostatic energy 
(127rZ*V£a'2/Qo)/(^-e-*), per ion with ^=(2TT3-1/2) 
X(c/a). This corresponds to 0.026a'2 Ry/ion. 

We find that the band-structure contribution and the 
electrostatic contribution tend to cancel in both cases. 
We find in fact that the band-structure term dominates 
in the case of the transverse wave and thus that the 
crystal is unstable against the corresponding distortion. 
This incorrect result is related to our earlier finding that 
the fee structure was lower in energy than the hep 
structure. The fee stacking of close-packed planes is 
found to have lower energy than the hep stacking; 
similarly, the change in stacking corresponding to an 
optical transverse wave propagating parallel to the 
c axis also is found to have lower energy. We may com
pute a frequency for the longitudinal optical mode from 
the above numbers; we obtain 3.3X1012 cps. This is in 
remarkable agreement with the value of 3.5X1012 cps 
found experimentally by Joynson.22 It may also be 
contrasted with the value obtained from the electro
static energy alone,, 13.2X1012 cps. 

We could proceed in the same way for the acoustical 
waves, keeping terms to second-order in Q. In the long-
wavelength limit we expect only the a's corresponding 
to Q to enter, and the longitudinal and transverse waves 
to separate. The computation proceeds as with the 
optical modes, but the first and second derivatives of 
E(q) enter, as well as E(q) itself. For the long-wave
length limit, it is probably simplest to treat the trans
verse waves in terms of shear constants computed as 
in the preceding subsection. 

The longitudinal acoustic waves cannot be treated in 
terms of a uniform distortion without violating our 
condition of rearrangement at constant volume so we 
consider the waves. On physical grounds we know that 
this must yield the same answer as if we had retained 
the diagonal terms in the Hamiltonian and computed 
the differential change in energy under a uniform expan
sion. Rather than estimate the second derivatives of 
E(q) which enter as Q goes to zero, we chose to compute 

22 R. E. Joynson, Phys. Rev. 94, 851 (1954). 

the frequency at the center of the hexagonal face of the 
single zone. At this point the acoustical and optical 
modes are degenerate. We consider longitudinal polari
zation vectors aT/c and a_T/c= aT/c*. A particular mode 
is selected by taking the a's to be real and the energies 
found to second order in the a's and a's as above. The 
electrostatic energy is found to be formally identical to 
that for the longitudinal optical mode given above while 
the mass factor in the kinetic energy is doubled; thus 
we find the frequency based only on the electrostatic 
energy lower by v2. On the other hand, the magnitude 
of the band-structure term is increased by more than 
30%, it dominates the electrostatic term, and we find an 
instability as we did for the optical transverse mode. 

7. Kohn Effect 

The Kohn effect23 is, in principle, included in this 
treatment. We use Hartree screening, which gives rise 
to a singularity in E{q) at q= 2k F. This singularity is not 
visible in Fig. 3 and it is in fact very slight. Woll and 
Kohn24 have shown that the resultant singularities in 
the phonon dispersion should only be observable under 
very favorable circumstances. It has, therefore, been 
surprising that irregularities do show up in dispersion 
curves,25 though not quite at the wave numbers 
expected. 

A likely resolution of this puzzle may be seen in 
Fig. 3. Any irregularity in E(q) will cause corresponding 
irregularities in the phonon dispersion curve. The sharp 
oscillation seen there should cause a sharp oscillation in 
the dispersion curve. This need not occur at precisely 
2k F though it may, as in zinc, be in roughly this position. 
We therefore suggest that the irregularties observed by 
Brockhouse et aL25 are not images of the Fermi surface, 
but images of the energy-wave-number characteristic. 

8. Experimental Determination of the 
Energy-Wave Number Characteristic 

The fact that E(q) enters so directly in phonon dis
persion and that the spectrum spans a large segment of 
wave-number space suggests it as a tool for the experi
mental determination of E(q). It is appropriate first to 
compute the electrostatic contribution to the energy 
associated with a given phonon and subtract it from the 
energy obtained from the experimental frequency. One 
then deduces the band-structure contribution from 
which the E(q) curve is to be obtained. 

It is clear that E(q) cannot be uniquely determined in 
this way. This is most easily seen by considering the de
pendence upon V(r), which is the Fourier transform of 
E(q). The phonon spectrum is completely determined 

23 W. Kohn, Phys. Rev. Letters 2, 393 (1959). 
24 E. J. Woll, Jr., and W. Kohn, Phys. Rev. 126, 1693 (1962). 
25 B. N. Brockhouse, K. R. Rao, and A. D. B. Woods, Phys. 

Rev. Letters 7, 93 (1961); B. N. Brockhouse, T. Arase, G. 
Caglioti, K. R. Rao, and A. D. B. Woods, Phys. Rev. 128, 1099 
(1962). 
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by the first and second derivatives of V(r) at the 
observed interatomic distances. Thus V(r) is not uniquely 
determined by the spectrum, nor is its transform. I t is 
therefore necessary to postulate a form for E(q) and 
fit parameters. 

This attempt has been made for lead using the ac
curately determined dispersion curves of Brockhouse 
et al.25 We found that the results were sufficiently 
sensitive to the form of the postulated E(q) curve that 
no meaningful curve could be obtained. We conclude 
that a rather reliable E(q) must be obtained first theo
retically, which could then be improved by adjusting 
to fit the observed spectrum. Because of the uncertainty 
of the effect of core-core interactions in zinc it did not 
seem appropriate to carry out this rather extensive 
analysis for zinc. 

VI. CONCLUSIONS 

Though we have not been entirely successful in the 
quantitative computation of properties, much can be 
learned from the analysis. 

We find that the rather rough calculation which one 
is able to do on a desk machine seems to suffice for the 
determination of the OPW form factors. The single 
curve, corresponding to initial and final states on the 
Fermi surface, enables the quantitative computation of 
a sizable array of electronic properties. We found that 
our results were quite accurate for the determination of 
the Fermi surface and the resistivity of the liquid. We 
also found agreement with the observed electronic 
specific heat but did not expect such agreement would 
be found in other polyvalent metals. Electron-electron 
and electron-phonon effects enter the density of states 
directly but seem not to affect the result in zinc. These 
effects are not expected to enter the resistivity nor the 
Fermi surface in any case. 

In considering other polyvalent metals we may note 
that in all cases the form factor approaches — | £ F as 
q goes to zero. Further, in any polyvalent metal which 
is rather free-electron-like, the form factors must be 
near zero at q near 2k F- Thus, we may expect the form-
factor curve to be very much the same for other poly
valent metals as it is for zinc.25a 

We find that the OPW form factor curve in question 
is a rather straight line in zinc. This suggests a phe-
nomenological approach in cases where one does not 
wish to carry out the complete calculation. One knows 
the q=0 intercept and needs only one other point on the 
curve. This may be obtained from an existing band 
calculation or even from an experimentally known 
Fermi surface. In the latter case there is the ambiguity 
of sign discussed in O, but if more than one gap is known 

25a Note added in proof. We have recently made calculations of 
the OPW form factors corresponding to initial and final states at 
the Fermi surface for all nontransition metals with atomic number 
less than that of zinc (results to be published). The resulting 
curves for each of the polyvalent metals (Be, Mg, Al, and Ca) are 
strikingly close to that for zinc if all curves are plotted in units 
of the Fermi energy for the metal in question. 

the signs can be determined readily if the form factor 
is in fact roughly a straight line. 

We found that the calculation of the energy-wave-
number characteristic would have to be improved 
significantly for a quantitative test of the method for 
computing atomic properties. I t was apparent in par
ticular that the E(q) would need to be computed for 
more values of q. Further, it may be necessary to com
pute more OPW form factors to avoid the interpolation 
we required for the summation over states. Finally, in 
zinc it may be essential to include the effects of core-
core interaction, particularly in the treatment of the 
change in energy upon melting and the elastic prop
erties. While we obtain semiquantitative agreement 
with some properties, in others we obtain errors in sign 
for the difference between band structure and electro
static energy and resulting instabilities against 
rearrangement. 

On the whole, we regard the results as encouraging. 
The computed band-structure energy entering the 
atomic properties appeared in all cases to be semi-
quantitatively correct. This implies that the band struc
ture effects are as small as we find and therefore that 
the perturbation approximation is justified. The validity 
of neglecting changes in core states would be much 
greater in other metals. Thus, assuming only that the 
Hartree approximation is sufficiently accurate, the 
method should be capable of giving reliable results. A 
more careful computation of E(q)y using high-speed 
computers, is much to be desired. Magnesium, alumi
num, or gallium would seem to be likely choices; also 
possibly sodium. 

I t would also be of interest to use the method phe-
nomenologically; that is, to adjust a computed E(q) to 
fit the observed phonon spectrum and to use this experi
mental characteristic to compute a range of properties. 

I t seems at first surprising that large band-structure 
effects are present when the Fermi surface is so free-
electron-like. I t will be recalled that when Leigh26 fit a 
band structure for aluminum to the observed elastic 
constants, he found very large deviations from a free-
electron Fermi surface. The primary feature of our 
calculation which explains this result is the very steep 
slope of the E(q) curve, corresponding to matrix ele
ments which change very rapidly with wave number. 
Thus, when the lattice is distorted and the zone faces 
displaced, the band gaps change very rapidly. Thus the 
important terms are the change in band structure under 
distortion rather than the redistribution of electrons in 
a rigid band structure. 

Another feature of our calculation, which is not 
apparent from the results alone, is the relative contribu
tion of various terms. I t turns out that E(q) in the im
portant region near q= 2k F is determined almost entirely 
by the first term in Eq. (3.2). This term arises from 
the non-orthogonality of OPW's or equivalently from 

26 R. S. Leigh, Phil. Mag. 42, 139 (1951). 
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the nonhermiticity of the pseudopotential. The inclusion 
of this term does not introduce any band gaps at the 
zone faces, but simply deforms the bands slightly. Thus 
we obtain the main qualitative features of the atomic 
properties before we introduce the familiar band-struc
ture effects at the zone faces. I t is also interesting to 
note that this term is absent in a wave-number-inde
pendent pseudopotential approximation. 

We have found the computation of the atomic prop
erties in terms of a sum over wave number of the energy-
wave-number characteristic more convenient for almost 
all properties we consider than the equivalent sum over 
neighbors of the effective ion-ion interaction, V(r). 
When the electrostatic energy is computed separately 
the convergence of the band-structure energy is quite 
rapid. I t may be seen from Fig. 4 that the forces (the 
derivative of Fig. 4) are very appreciable well beyond 
six sets of neighbors (38 neighboring atoms) so that the 
convergence using V(r) is certainly no more rapid. 
Furthermore, the computation of V(r) requires taking 
the Fourier transform of E(q) which may introduce 
further error. I t has been rather striking that such a 
wide range of properties can be computed so simply 
once the energy-wave-number characteristic is known. 

I t should be noted that we have included in the band-
structure energy all of the screening. One might suggest 
that this is the only important contribution to the band-
structure energy and thus that one could hope to com
pute most of these properties simply using Hartree 
screening of the net Coulomb potential of the ion with
out concern for the detailed structure of the ion. We 
may show that this is not the case. 

The electronic properties depend on the OPW form 
factor curve given in Fig. 2. To be sure, with simple 
screening, we obtain the correct value, — JEF, in the 
long-wavelength limit, and the curve rises as q ap
proaches 2k F. However, it rises only to about —0.15 Ry; 
thus we lose completely the free-electron-like behavior 
which characterizes the metal so well. 

The atomic properties are described in terms of the 
energy-wave-number characteristic. If we compute this 
characteristic with Hartree screening of point ions, we 
again obtain results which are roughly correct in the 
long-wavelength limit. This is reflected in the success of 
the Bohm-Staver4 treatment of the speed of long-
wavelength longitudinal acoustical modes. However, 
every other property we have considered depends most 
strongly on the characteristic in the region q^2kF, and 
the structure of the curve in this region derives entirely 
from the details of the ion potential. 

To be quantitative, it is a simple exercise to carry out 
the analysis we have used for a simple potential (no 
wave-number dependence). If that simple potential is 
the Coulomb potential for point ions of charge Ze, we 
obtain E(q) = (4Te2Z/tt0q

2)(l-eq)/2eq. We may add the 
electrostatic and band-structure energy and find it to be 
given by the electrostatic energy of Eq. (3.4) with 
each term divided by the Hartree dielectric function eq. 
[This means that the effective ion-ion interaction V(r) 

for this case is simply the screened Coulomb interaction, 
a result included in Cohen's27 Eq. (7).] We have carried 
out this analysis for lead and computed the velocity of 
sound in the [110] direction. For the longitudinal wave 
we obtain 3.88 (in units of 105 cm/sec) compared to the 
Bohm-Staver value (uniform positive background rather 
than point ions) of 3.44. Thus the discrepancy with the 
observed25 2.43 is increased. For the transverse wave 
with polarization parallel to the [110] direction we 
found 2.75 which is higher than the value 1.07 based 
upon the electrostatic energy alone and than the ob
served25 0.64. For the transverse wave with polarization 
parallel to [001] we obtain 2.88 to be compared with 
the electrostatic value of 3.21 and the experimental25 

1.26. These large corrections occur because the deriva
tives of E(q) and, therefore, of the dielectric function 
enter. Clearly the inclusion of screening does not elimi
nate the large discrepancies of the electrostatic 
approximation. 

If one concludes thus that the major correction comes 
from the structure of the ion, one might still suggest a 
simple treatment in terms of a wave number inde
pendent pseudopotential approximation. We found that 
the wave number dependence was very strong and 
important, as indicated in Fig. 1, so such an approach 
is certainly not useful for a calculation from first 
principles. However, one might wish to use it phe-
nomenologically. To be sure, one may define from the 
OPW form factor of Fig. 2 an equivalent effective 
potential, and from the energy wave number character
istic an equivalent effective potential but these form 
significantly different potentials so we gain nothing at 
all; it is simply replacing one unknown curve by another. 
That these two potentials are not the same can be seen 
most strikingly by noting again that the term in the 
E(q) computation which most strongly influences the 
character of E(q) is not the second term in Eq. (3.2), 
which resembles ordinary second-order perturbation 
theory, but the first term which derives from the non-
orthogonality of OPW's. 

We find that the simplifications of the theory which 
we have considered do not contain the important fea
tures of the problem. We might also ask if we can readily 
improve our calculation by carrying it to higher order. 
We note that if we carry the screening to higher order, 
the potential to be associated with each ion then depends 
upon the arrangement of the ions. Thus, the separation 
into structure-dependent and potential-dependent 
terms is no longer possible; the OPW form factor and 
the E(q) term lose their meaining. In terms of the 
effective ion-ion interaction, this means that we pass 
from two-body to multibody interactions, as indicated 
by Cohen.27 We conclude that the most straightforward 
improvement of the calculation makes the computations 
immensely more complex. 

27 M. H. Cohen, paper contributed to Colloquium on The 
Structure of Metallic Solid Solutions, Orsay, France), July 9-11, 
1962 (to be published in the Proceedings of the Colloquium). 


